首页>>深圳资讯>>城事资讯>>正文

大模型上车有多难?

日前,中国电动汽车百人会发布调研报告《全球及我国新能源汽车产业发展趋势与政策走向》。报告指出,探索大模型在汽车领域的应用仍面临诸多挑战,并给出了相应建议。

01 挑战

目前,国内企业面临训练芯片“卡脖子”问题。

大模型云端训练需要上万片高端GPU训练芯片,尤其是端到端自动驾驶训练数据量已达到PB级,训练芯片需求更大。特斯拉端到端自动驾驶FSD V12在超过10万块GPU芯片支撑下才实现周级迭代。国内多数车企仅有上千块GPU,很难发挥海量数据价值并实现较好的训练效果。

大模型在云端提供服务也需要大量算力支撑,以ChatGPT为例,按照每天独立访问量2500万次计算,预计需要3万多片A100芯片。目前,美国对华禁售A100、H100高性能GPU芯片,甚至也限制出售“阉割”版的A800、H800。

同时,国产芯片仍存在制程落后、性能不足等问题,部分芯片在大规模训练时故障率较高,使用体验仍有欠缺,导致我国车企的算力扩展遇到很大阻力。

国内大模型训练数据量少且质量不高

数量方面,据Epoch AI估算,全球用于训练通用大模型的数据中,书籍、科研论文等高质量语言数据集可能会在2024 年前耗尽,大模型训练或将面临无数据可用的窘境。中文语料数据仅占约1.3%,Common Crawl、BooksCorpus、WiKi pedia、ROOT等主流数据集都以英文为主,即使是最流行的Common Crawl数据集,中文数据也只占4.8%。

另外,大模型理解和掌握客观世界规律,需要学习大量来自知识和价值观层的数据,此类中文语料短缺严重,甚至无法通过机器翻译进行弥补。聚焦自动驾驶领域,特斯拉拥有超过1000万个有效视频片段数据,且其在全球有超过600万辆智能汽车在通过影子模式持续采集数据,平均每辆车一天就能搜集到一个典型的极端工况样本。与之相比,国内车企场景数据普遍不足百万,且出于数据合规的考虑,车企之间数据的共享流通仍有阻塞,导致国内车企的高价值场景数据较特斯拉相差超过一个数量级。

质量方面,高质量数据集,需要企业在数据治理方面投入巨大的资金和精力,包括顶层设计、标注规范、标注质量把控以及发布后更新升级等各个方面,但国内企业在数据挖掘和数据治理领域的积累和沉淀不足。汽车行业属于传统制造业,数据的沉淀更是差强人意。这使得大模型在汽车行业落地应用过程中,存在明显的训练数据分布不均衡及完备性较差等问题。例如,国内车企的绝大部分数据分布在几个密集的场景里,“头部效应”非常明显,真正需要的极端工况数据却非常少。且国内车企车型多而单一车型存量少,不同车型的传感器功能不一样,采集的数据各有差异。与特斯拉车型相对集中且传感器方案比较统一相比,国内车企数据的复用性很差。

数据问题不解决,大模型可能会形成“偏科”,导致产生严重的“幻觉”问题,由于汽车行业本身对安全性和可靠性的要求极高,这也会大大限制大模型的应用落地。

落地商业模式不清晰

一方面,大模型处于发展初期,主要以Token使用量收费。从TO B模式来看,车企每年的预算、成本、营收是固定的,以Token使用量来收费的模式动态性太大,车企难以接受。

另一方面,“软件+服务”的模式,在国内很难得到认可。在汽车行业“内卷”越来越严重的当下,纯license模式也难以持续,企业付费意愿不高。此外,大模型商业化的价值,还是以提升车企产品销量的传统方式为主,车企、大模型企业双方还未找到可以合作共赢的路径。

缺乏良性合作生态支撑。一是贯穿实时信息以及垂类信息的数据生态还未形成,导致大模型对实时动态和垂直领域的理解能力比较差。例如,GPT-3.5训练数据集截止到2021年,无法理解和处理2022年的信息。

二是大模型上车会对整车软件架构、硬件能力、交互策略产生很大影响。目前国内大模型产品非常多且迭代速度非常快,如何在保证产品竞争力的前提下与大模型企业合作,车企仍存疑惑。

三是开源大模型没有一个是由中国完全主导的,势必会影响国内AI技术的迭代速度与创新能力。在全球化竞争日益激烈的背景下,没有主导的开源大模型,可能使中国AI企业在国际市场上处于不利地位。

缺乏大模型能力评价标准。行业和消费者对大模型上车的期望都很高,但对其表现的诉求“千人千面”。有些人希望大模型无所不能,对所有的问题都能答复。有些人希望简洁,只要按照指令操作即可。如何评价大模型在具体场景下的能力,仍然没有明确、统一的标准。例如,当前大模型在语音交互的语言理解、逻辑推理、信息归纳等能力方面,已经有很多评价指标,但是在上车评价方面,仍面临识别准确率的评判局限、响应速度评价单一、用户体验受主观性和复杂性拘束、缺乏多场景综合评估等挑战。

02 建议

加强大模型对汽车行业颠覆性影响的认识。汽车行业的根本是制造业,大模型创新发展的速度远远超出了汽车产业,两个产业融合会对汽车产业产生深刻甚至颠覆性的影响。汽车行业需要从战略上刷新认知,顺应技术发展趋势,加快拥抱和接纳大模型的速度,充分利用大模型加快汽车产业智能化发展的步伐。

建立适应大模型发展的管理机制。智能汽车的快速发展是多部门共同推进的结果,大模型在汽车行业的落地应用是一个系统性工程,需要算力、算法、信息传输等多层面能力的共同支持,更需要政府部门统筹推进,建立一个适应大模型发展的管理机制。在技术相对落后的情况下,发挥我国多系统协同的能力和优势,从而探索出差异化的发展道路。

加强试点示范。目前,国内通过备案的大模型达117个,但真正实现商业变现的很少,关键是没有找到核心的应用场景。建议选择具有代表性的车企和大模型企业,开展试点示范项目,通过应用驱动的方式,探索大模型在汽车领域的高价值应用场景,形成可复制、可推广的经验模式,促进大模型的可持续健康发展。

加快推动算力共享。以美国为代表的发达国家的AI和芯片,已经形成软硬件相互促进的合力。为弥补算力短板,建议政府部门和行业机构推动建立算力联盟,把部分公共属性的算力统筹起来。或者鼓励企业揭榜挂帅,将国内各公司分散的算力集中起来,推动算力资源共享,解决AI基建不足的问题。

促进汽车数据共享与流通。一方面,加快制定汽车数据定价、权责划分、流通交易等基础制度,消除相关法规壁垒,促进汽车数据大规模流通,增加可供大模型训练的数据量。

另一方面,借鉴北京市政府开放市区级单位高质量政务数据的做法,在合法、保证隐私的前提下逐步放开部委、地方政府的政务数据并积极引导行业机构释放部分高质量数据,形成通用型数据集并对外公开,比如地理信息涉密等级、AI内容生成涉及的道德、伦理、法规等相关信息。

此外,加大对数据合成、仿真数据方面的支持力度,适当鼓励并推动合成数据的应用,弥补国内车企数据不足的短板。

构建开放性合作生态。发挥好车企的链主角色,推动形成面向全行业的开放平台。车企把握数据入口,供应商提供算法、算力,共同打造能力共享、灵活组合的开放性生态,协同推动汽车行业大模型的发展。

加快建立大模型上车与评价标准体系。在行业机构的牵头下,根据差异化落地场景,分步骤推动大模型上车评价标准和宣传体系的建立。可优先推动进展较快的人机交互等应用场景。



温馨提示:微信搜索公众号【深圳之窗】,关注后在对话框内回复【资讯】即可获取深圳的各种资讯内容,包含深圳入户,深圳天气,深圳交通,深圳人文,同时,扫描关注文下企微号,可以了解深圳近期的各种福利活动优惠等信息



版权与免责声明:

感谢您访问我们的网站。请在阅读本免责声明之前注意以下内容:

1.该文章主要收集于互联网,目的在于传递更多信息,并不代表本网赞同其观点或证实其内容的真实性。

2.本网站的所有信息仅供参考,不构成任何形式的建议或指导。用户应自行承担使用本网站信息的风险。

3.该文章主要来源于互联网,如发现本网站上的文章涉及侵权问题时,建议您立即联系本网站的站长或管理员进行删除处理。

相关推荐

iQOO 13影像规格曝光:潜望镜被砍 主摄长焦全面缩水

Sep 30, 2024

蔚来获安徽33亿元增资

Sep 30, 2024

曝奇瑞汽车因欧盟关税推迟在西班牙生产电动汽车,工作量少只能雇佣兼职工人

Sep 30, 2024

2024中国食品饮料百强榜发布,茅台蝉联第一,千亿元级企业仅剩2家

Sep 30, 2024

京东投入 15 亿元布局香港市场,长期上不封顶

Sep 30, 2024

辛巴徒弟粉丝破亿搅动直播电商格局

Sep 30, 2024

阿里破冰,京东和解,微信躺赢

Sep 30, 2024

阿里破冰,京东和解,微信躺赢

Sep 30, 2024

《三角洲行动》交出答卷,放长线能否钓上“大鱼”?

Sep 30, 2024